360足球巴巴 PRODUCTS CENTER
技术文章您现在的位置:首页 > 技术文章 > 新旧标准中塑料弯曲模量的计算方法比较

新旧标准中塑料弯曲模量的计算方法比较

更新时间:2012-12-19   点击次数:1767次

黄 佩 贤 (上海汽车工业质量检测研究所,上海200040) 摘要:GB/T9341—2000《塑料弯曲性能试验方法》已于2000年5月1日起取代了原有的GB9341—1998的标准。新老标准的一个很显著的差异就是塑料弯曲模量的计算方法改动很大。对新老标准中有关弯曲模量的计算方法进行了比较分析和探讨,并对如何提高数值的度提出了几种方法,为更好地理解和实施新标准作了一些补充。关键词:塑料;弯曲模量;计算方法中图分类号:T-652。1 文献标识码:B 文章编号:1001-4012(2002)10-0455-03 PLASTICS-CALCULATION AND COMPARISON OF FLEXURAL MODULUS IN NEW AND OLD STANDARDS HUANG Pei-xian (Shanghai Automotive Industry Quality Inspection Research Institute,Shanghai 200040,China) Abstract:《Plastics-Determination of flexural properties》GB/T9341—2000 has replaced the old standard,GB9341—1998,on May 1st2001.The most notable difference between the two standards is the calculation of flexural modulus.This article indicates some defects in the old standard,analy- Ses the developments in the new one,and also poins out the method to improve the accuracy of flexural modulus. Keywords:Plastics;Flexural modulus;Calculation method 从2000年5月1日起,由国家*发布的GB/T9341—2000《塑料弯曲性能试验方法》正式取代了原有的GB9341—1998标准。经过比较不难发现,新标准中一个十分显著的变化就是对塑料弯曲模量的计算作了很大的改动。 1 新旧标准的比较 1. 1GB9341—1998中弯曲模量的计算方法及存在的缺陷 GB9341—1998《塑料弯曲性能试验方法》中关于弯曲模量的定义是:由负荷/挠度曲线的初始线性部分按Ef=L3P/(4bh3Y)计算。 式中 Ef——弯曲模量,Mpa P ——负荷-挠度曲线的初始线性部分上选定点的负荷,N Y ——与负荷相对应的挠度,mm L ——跨度,mm b ——试样宽度,mm h——试样厚度,mm 由上述公式可以看出,对于同一尺寸的试样而言,L3/(4bh3)为定值,那么塑料的弯曲模量是由负荷-挠度曲线上的初始线性部分上的某点(P/Y)得出。也就是说只要是初始线性部分的任意一点均可以得出弹性模量。但事实上这样的定义是有缺陷的。首先,“初始线性部分”的定义中“初始”的概念比较模糊。何为初始?是线性部分的前1%,0.1%,或是0.01%,都没有明确说明。这种含糊不清的定义造成的结果可能就是试验者自定义出多个“初始线性部分”,并在这些区间上分别任取一点作为负荷/挠度对应点得出弯曲模量,显然不同的对应点得出的数值是各不相同的。由此可见,用这样的方法计算弯曲模量是不严谨的。其次,即使确定了某一初始部分,在这个部分的不同位置,可以得出不同的模量值,并且差异较大。图1给出了某一材料的负荷-挠度曲线,自定义应力-应变曲线前2%为初始线性部分,在这个区域内取5点,相对于应变为0.0005,0.005,0.01,0.015和0.02分别得出不同的负荷-挠度值和弯曲模量值,见表1。 表1:某PP6材料不同应变值对应的不同弯曲模量采样点号 应变 负荷 挠度 弯曲模量 /mm·mm-1 /N /mm /MPa 1 0.0005 0.005 0.085 9 5 960 2 0.005 0.031 0.853 3 721 3 0.01 0.085 1.707 5 099 4 0.15 0.134 2.560 5 360 5 0.02 0.181 3.413 5 431 由表1可见,不同的采集点得出的模量值是不同的。若以表中的任何一个模量值来表示这一材料的弯曲弹性模量似乎都符合老标准中的定义,但究竟使用哪个才是比较接近真值的呢?由此看出老标准中对弯曲模量的定义是有缺陷的。进一步分析,还发现这样的问题,按老标准给出的公式得出的模量值是由曲线上某点计算得出的,这个结果容易受到多种客观因素的影响。比如试样尺寸精度不高、压头支座与试样的接触不稳定、传感器量程选用不当等都会影响到zui终的结果。因此,由负荷-挠度曲线上初始线性部分区间上某点得出模量值就存在一定的偶然性和不稳定性。 1. 2GB/T9341—2000中弯曲模量的计算方法及其优点新标准中规定了弹性模量的测量,先根据给定的弯曲应变εfi=0.0005和εfi=0.0025,得出相应的挠度S1和S2(Si=εfiL2/6h),而弯曲模量Ef=(σf2-σf1)/(εf2-εf1)。其中σf2和σf1分别为挠度S1和S2时的弯曲应力。新标准还规定此公式只在线性应力-应变区间才是的,即对大多数塑料来说仅在小挠度时才是的。由此公式可以看出,在应力-应变线性关系的前提下,是由应变为0.0005和0.0025这两点所对应的应力差值与应变差值的比值作为弯曲模量的。这种新的计算方法避免了旧标准中存在的几个缺陷。(1) 明确规定了获取弯曲模量的取值范围,即在应力-应变线性部分,以应变为0.0005和0.0025这两点作为明确的取值点。(2) 不再用单点测定模量,而是用应变点间的割线作为弯曲模量的取值段,减少了由于单点取值造成的数据误差和异常跳动。以目前正在使用的材料试验机为例,若弯曲试验的速度为2.0mm/min,该设备的采点率为20点/S,那么通过计算可得出应变为0.0005和0.0025这两点间的采点间隔为3点。也就是说,若将应变0.0005作为*个采集点,那么应变0.0025则是第五个采集点,以这两点间的割线计算出弯曲模量。目前,对于一些更*的试验设备而言,其采点率可以达到1000点/s,那么经过换算得出应变0.0005到应变0.0025间的采点间隔有250点之多。这样,采点间隔越多,受客观因素影响就越少,得出的模量值也就越。这种计算方法相对于老标准由单点获取模量有了很大的改进。 那么,新标准中为什么要规定这样两个应变非常小的点作为其取值点呢?对于一些高分子材料,如玻璃态高聚物弯曲时,曲线的初始阶段是一段直线,材料表现出虎克弹性行为,即在这段范围内停止弯曲,移去外力,试样将立刻恢复原状。这段线性区应力-应变一般只有百分之几,但当应变达到百分之几以后,一些硬弹性材料就会产生不太典型的屈服,也可以说是开始进入塑性变形区域,其应力-应变曲线仍为直线但渐渐产生偏折。所以新标准中明确规定弯曲模量的计算只限定在线性应力-应变区,且以应变为0.0005和0.0025这两点作为取值点。事实上,由弯曲曲线可以看出,在挠度不断增加后,应力-应变线性部分在不断延伸并渐渐偏离zui初的线性轨道,斜率也变得逐渐平缓起来;在挠度较大的区域,或许也能捕捉到一段近似线性的区域,但此时求出的弯曲模量与小挠度时相差较大,这一现象可由表2看出。 表2:某材料应力-应变线性区的不同区域得出的不同模量值采样段号 应变/mm·mm-1 弯曲模量/MPa 1 0.0005~0.0025 1 916 2 0.0025~0.0045 1 688 3 0.0045~0.0065 1 508 4 0.0065~0.0085 1 330 5 0.0085~0.0105 1 250 2. 提高实际测量的准确性 2.1实际测量中遇到的困难我们已经知道要获得弯曲模量,就要在应力-应变曲线的初始线性部分的一个极小范围内取值。即便是用计算机软件来控制试验,由于取值的范围太小,也会给测量带来很大的困难。有些试验设备的精度不高,无法采集到0.0005和0.0025这样小的应变,这就需要提高传感器的精度。有些设备虽然有足够的精度,但软件没有应变设定的功能,这就需要将应变量转化为挠度值,将应力-应变曲线转化为负荷-挠度曲线,通过设定挠度区间间接地定义应变区间,再进行弯曲模量的测定。以上这些问题都可以通过设备升级或数据转化得以解决。但我们仍然会遇到一个很常见且很棘手问题,即在大量的试验过程中,在应变0.0005到0.0025这个范围内测得的弯曲模量的数值出入很大,见表3修正前。表3:某PP6材料的弯曲模量 样品号 弯曲模量/Mpa 未修正前 修正后 1 586 1 932 2 240 1 916 3 1 532 1 916 4 1 566 1 979 5 1 804 1 944 2.2差异产生的原因由表3修正前的数据看出,某材料弯曲模量的一组数据差异很大。这是什么原因呢?由图2可看出(其他曲线也类似),在弯曲试验刚开始的阶段,曲线并不是呈线性的,而是存在一些非线性的异常跳动。若将这一范围包含在内,那么取得的应变值所对应的应务也是跳动的,由此得出的弯曲模量也就不正常了。产生这种非线性线段的因素可能有以下几种:①由于试样模压或注塑成型时,样品并非是严格的矩形,而是出现一些扭曲和凹陷或是在边缘出现飞边等现象,这会造成压头与试样接触时的不稳定而引起数据的异常跳动。②压头与支座的尺寸不符合标准的要求,也会造成与试样接触时的不稳定而引起数据的异常跳动。③使用量程较大的传感器,造成在小负荷时设备的分辨率降低,而产生某一点的负荷值跳动。④在试验刚开始时,压具与试样之间有一段虚接触,表现为压下的位移增加而负荷并不增加,在应力-应变曲线上表现为一段抖动的平台样的曲线。若这些影响因素不去除,那么都会影响到弯曲模量的zui终结果。产生这种非线性线段的因素除上述外,还有机器本身的问题,如机械的间隙、整机的刚性。 图2:表3中4号试样的应力-应变曲线 2.3问题的解决 由图2可见,在应力-应变曲线的开始阶段有一段非线性的曲线,其实在绝大多数试验中这段非线性曲线基本都存在。为了取得正确的弯曲模量数值,必须将这段曲线去除,也就是要将线性部分的起点放在这一非线性线段之后。我们可以将得到的应力-应变曲线放大,了解这段非线性曲线的范围,然后利用计算机软件设置一个负荷松弛修正的功能,将这一负荷松弛值设定在非线性曲线所包含的负荷值之外。这样,在应力-应变曲线中应变的零坐标点就放在了非线性段之后,这就可以保证应变0.0005和0.0025是在应力-应变曲线的线性部分。虽然这种修正的方法比较繁琐,即在每得到一根弯曲曲线之后都要进行修正,但却可以保证弯曲模量值的准确性。具体数值可参考表3修正后的结果。实践证明,通过这样的修正得出的弯曲模量值十分令人满意的。

Baidu
map